Electromagnetic Compatibility/Interference (EMC/I) (3+0) Course Code: EE-845

Course Description:

EMC is concerned with the Generation, Transmission, and Reception of Electromagnetic Energy. These three aspects of EMC problem form the basic framework of any EMC design. The subject of EMC is as important sub -discipline of electrical engineering (EE) as other more traditional subjects such as electric circuit analysis and electronics. The prerequisites are the completion of the basic undergraduate electrical engineering courses in electric circuit analysis, signals and systems, electronics, and electromagnetic fields. This course builds on those basic skills, principles, and concepts and applies them to the design of modern electronic systems so that these systems will operate compatibly with other electronic systems and also comply with various governmental regulations on radiated and conducted electromagnetic emissions. In essence, EMC deals with interference and the prevention of it through a compatible design of electronic systems.

This course is also concerned with the design of electronic systems such that interference from or to that system will be minimized. The emphasis will be on digital electronic systems. An electronic system that is able to function compatibly with other electronic systems and not produce or be susceptible to interference is said to be electromagnetically compatible with its environment. A system is electromagnetically compatible with its environment if it satisfies three criteria:

1. It does not cause interference with other systems.

- 2. It is not susceptible to emissions from other systems.
- 3. It does not cause interference with itself.

Designing for EMC is not only important for the desired functional performance; the device must also meet legal requirements in virtually all countries of the world before it can be sold. Designing an electronic product to perform a new and exciting function is a waste of effort if it cannot be placed on the market! EMC design techniques and methodology have become as integral part of a design as, for example, digital design.

Consequently the material in this course has become a fundamental part of an electrical engineer's background.

Text Book:

Introduction to Electromagnetic Compatibility by Clayton Paul, 2nd Ed, 2006

Reference Books:

- Designing Electronic Systems for EMC, William G. Duff, 2011
- Electromagnetic Compatibility Engineering by Henry Ott. 2009
- EMC for Product Designers by T. Williams, 3rd Ed. 2001

Pre-requisites: NA

ASSESSMENT SYSTEM

Quizzes	10%
Assignments	10%
MSE	30%
Projects	10%
ESE	40%

Teaching Plan:

Week	Topics	Learning outcomes
No.		
1-2	Electromagnetic	Aspects of EMC
	Compatibility (EMC)	History of EMC
		Examples
		Electrical Dimensions and Waves
		Decibels and Common EMC units
		Power loss in cables
		Signal Sources Specification
3-4	EMC Requirement for	Requirements for Commercial Product Marketed
	Electronic Systems	in
		USA
		Requirements for Commercial Product Marketed outside USA
		Requirements for Commercial Aircrafts
		Requirements for Commercial Vehicles
		Design Constraints for Products
5-6	Transmission Lines and	Transmission Line Equation
	Signal	Per-Unit-Length Parameters for wire and PCB
	Integrity	structures
		High Speed digital interconnects and signal
		integrity Different Solutions (Time domain,
		Lumped circuit model, phasor solution)
7-8	Signal Spectra- The	Periodic Signals & Multiple Harmonics
	relationship between Time	Spectra of Digital Waveforms
	domain and Frequency	
	Domain	
	MIDTERM IN WEEK 9	
10	Different Types of EMI	Electric Field or capacitive coupling
	Coupling	Magnetic Field or inductive coupling
		Plane wave coupling
		Common Impedance Problem
		Coupling in PCB circuits

11-12	Conducted Emissions and	Measurement of Conducted Emissions
	Susceptibility	Power Supply Filters
		Power Supplies
		Power Supply and Filter Placement
		Conducted Susceptibility
13	Antennas	Wire Antennas.
		Aperture Antennas
		Wideband Antennas
		Antenna Gain factor
14-15	Radiated Emissions and	Simple Emission Models for wires and PCB
	Susceptibility	lands Simple Susceptibility Models for wires and
		PCB lands
16	Crosstalk	Two Conductor TLs and Cross-Talk
		Three Conductor TLs and Cross-Talk
17	Shielding	Shielding Effectiveness
		SE against Far-Field Sources
		SE against Near-Field Sources
		*System Design for EMC
18	END SEMESTER EXAMS	